973 resultados para Microbial ecology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine sponges (phylum Porifera) are the oldest extant metazoan animals on earth and host large populations of symbiotic microbes: Bacteria, Archaea and unicellular Eukaryota. Those microbes play ecological functions which are essential to the health of the host including carbon, nitrogen and sulfur cycling as well as host defence through the production of bioactive secondary metabolites which protect against infection and predation. The diversity of sponge-associated microbes is remarkable with thousands of OTUs reported from individual sponge species. Amongst those populations are sponge-specific microbes which may be specific to sponges or specific to sponge species. While marine natural product discovery concerns many animal phyla, Porifera account for the largest proportion of novel compounds. Evidence suggests that many of these compounds are the products of symbiotic microbes. Descriptions of sponge-associated microbial community structures have been advanced by the development of next-generation sequencing technologies while the discovery and exploitation of sponge derived bioactive compounds has increased due to developments in sequence-based and function-based metagenomics. Here, we use pyrosequencing to describe the bacterial communities associated with two shallow, temperate water sponges (Raspailia ramosa and Stelligera stuposa) from Irish coastal waters and to describe the bacterial and archaeal communities of a single sponge species (Inflatella pellicula) from two different depths in deep waters in the Atlantic Ocean, including at a depth of 2900m, a depth far greater than that of any previous sequence-based sponge-microbe investigation. We identified diverse microbial communities in all sponges and the presence of sponge-specific taxa recruiting to previously described and novel spongespecific clusters. We also identified archaeal communities which dominated sponge-microbe communities. We demonstrate that sponge-associated microbial communities differ from seawater communities indicating host selection processes. We used sequence-based metagenomic techniques to identify genes of potential industrial and pharmacological interest in the metagenomes of various sponge species and functionbased metagenomic screening in an attempt to identify lipolytic and antibacterial activities from metagenomic clones from the metagenome of the marine sponge Stelletta normani. In addition we have cultured diverse bacterial species from sponge tissues, many of which display antimicrobial activities against clinically relevant bacterial and yeast test strains. Other isolates represent novel species in the genus Maribacter and require emendments to the description of that genus.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used geophysics, microbiology, and geochemistry to link large-scale (30+ m) geophysical self-potential (SP) responses at a groundwater contaminant plume with its chemistry and microbial ecology of groundwater and soil from in and around it. We have found that microbially mediated transformation of ammonia to nitrite, nitrate, and nitrogen gas was likely to have promoted a well-defined electrochemical gradient at the edge of the plume, which dominated the SP response. Phylogenetic analysis demonstrated that the plume fringe or anode of the geobattery was dominated by electrogens and biodegradative microorganisms including Proteobacteria alongside Geobacteraceae, Desulfobulbaceae, and Nitrosomonadaceae. The uncultivated candidate phylum OD1 dominated uncontaminated areas of the site. We defined the redox boundary at the plume edge using the calculated and observed electric SP geophysical measurements. Conductive soils and waste acted as an electronic conductor, which was dominated by abiotic iron cycling processes that sequester electrons generated at the plume fringe. We have suggested that such geoelectric phenomena can act as indicators of natural attenuation processes that control groundwater plumes. Further work is required to monitor electron transfer across the geoelectric dipole to fully define this phenomenon as a geobattery. This approach can be used as a novel way of monitoring microbial activity around the degradation of contaminated groundwater plumes or to monitor in situ bioelectric systems designed to manage groundwater plumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of probiotics and prebiotics to the manipulation of the microbial ecology of the human colon has recently seen many scientific advances. The sequencing of probiotic genomes is providing a wealth of new information on the biology of these microorganisms. In addition, we are learning more about the interactions of probiotics with human cells and with pathogenic bacteria. An alternative means of modulating the colonic microbial community is by the use of prebiotic oligosaccharides. Increasing knowledge of the metabolism of prebiotics by probiotics is allowing us to consider specifically targeting such dietary intervention tools at specific populatiori groups and specific disease states. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.